Analytic analysis of auxetic metamaterials through analogy with rigid link systems

Recent progress in advanced additive manufacturing techniques has stimulated the growth of the field of mechanical metamaterials. One area particular interest in this subject is the creation of auxetic material properties through elastic instability. This paper focuses on a novel methodology in the analysis of auxetic metamaterials through analogy with rigid link lattice systems. Our analytic methodology gives extremely good agreement with finite element simulations for both the onset of elastic instability and post-buckling behaviour including Poisson’s ratio. The insight into the relationships between mechanisms within lattices and their mechanical behaviour has the potential to guide the rational design of lattice based metamaterials.Screen Shot 2017-03-18 at 9.13.10 PM

D. J. Rayneau-Kirkhope, C. Zhang, L. Theran, M. A. Dias (2017). Arxiv

Recipes for selecting failure modes in 2-d lattices

auxeticWe present an analytical model to investigate the mechanics of 2-dimensional lattices composed of elastic beams of non-uniform cross-section.Our approach is based on reducing a lattice to a single beam subject to the action of a set of linear and torsional springs, thus allowing the problem to be solved through a transfer matrix method. We show a non-trivial region of design space that yields materials with short wavelength modes (closely associated with auxetic behaviour) for strains greater than that required to trigger elastic instability. The critical loading required to make this transition from long to short wavelength buckling modes is calculated. Furthermore, we present lattice parameters that provide direction-dependent deformation modes offering great tailorability of the mechanical properties of finite size lattices. Not only is our analytical formulation in good agreement with the finite element simulation results, but it provides an insight into the role of the interplay between structure and elastic instability, and gives an efficient methodology to pursue questions of rational design in the field of mechanical metamaterials.

D. J. Rayneau-Kirkhope, M. A. Dias EML (2016). Arxiv and Journal

Diffusion of a Brownian ellipsoid in a force field

We calculate the effective long-term convective velocity and dispersive motion of an ellipsoidal Brownian particle in three dimensions when it is subjected to a constant external force. This long-term motion results as a “net” average behavior from the particle rotation and translation on short time scales. Accordingly, we apply a systematic multi-scale technique to derive the effective equations of motion valid on long times. We verify our theoretical results by comparing them to numerical simulations.BME

E. Aurell, S. Bo, M. A. Dias, R. Eichhorn, and R. Marino EPL (2016). Arxiv and Journal

Minimal model for transient swimming in a liquid crystal

StartUp When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small.  However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady-state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong anchoring case for any anchoring strength. We also find that the startup time increases with the ratio of the rotational viscosity to the shear viscosity, and then ultimately saturates once the rotational viscosity is much greater than the shear viscosity.

M. S. Krieger, M. A. Dias, and T. R. Powers,  EPJE  (2015). Arxiv and Journal

“Wunderlich, meet Kirchhoff”: A general and unified description of elastic ribbons and thin rods

Figure5The equations for the equilibrium of a thin elastic ribbon are derived by adapting the classical theory of thin elastic rods. Previously established ribbon models are extended to handle geodesic curvature, natural out-of-plane curvature, and a variable width. Both the case of a finite width (Wunderlich’s model) and the limit of small width (Sadowksky’s model) are recovered. The ribbon is assumed to remain developable as it deforms, and the direction of the generatrices is used as an internal variable. Internal constraints expressing inextensibility are identified. The equilibrium of the ribbon is found to be governed by an equation of equilibrium for the internal variable involving its second-gradient, by the classical Kirchhoff equations for thin rods, and by specific, thin-rod-like constitutive laws; this extends the results of Starostin and van der Heijden (2007) to a general ribbon model. Our equations are applicable in particular to ribbons having geodesic curvature, such as an annulus cut out in a piece of paper. Other examples of application are discussed. By making use of a material frame rather than the Frénet-Serret’s frame, the present work unifies the description of thin ribbons and thin rods.

M. A. Dias and B. Audoly, Journal of Elasticity (2014) Arxiv and Journal.

Swimming near Deformable Membranes at Low Reynolds Number

Microorganisms are rarely found in Nature swimming freely in an unbounded fluid. Instead, they typically encounter other organisms, hard walls, or deformable boundaries such as free interfaces or membranes. Hydrodynamic interactions between the swimmer and nearby objects lead to many interesting phenomena, such as changes in swimming speed, tendencies to accumulate or turn, and coordinated flagellar beating. Inspired by this class of problems, we investigate locomotion of microorganisms near deformable boundaries. We calculate the speed of an infinitely long swimmer close to a flexible surface separating two fluids; we also calculate the deformation and swimming speed of the flexible surface. When the viscosities on either side of the flexible interface differ, we find that fluid is pumped along or against the swimming direction, depending on which viscosity is greater.ModelInterface

M. A. Dias and T. R. Powers PoF (2013) Arxiv and Journal.

A non-linear rod model for folded elastic strips


We consider the equilibrium shapes of a thin, annular strip cut out in an elastic sheet. When a central fold is formed by creasing beyond the elastic limit, the strip has been observed to buckle out-of-plane. Starting from the theory of elastic plates, we derive a Kirchhoff rod model for the folded strip. A non-linear effective constitutive law incorporating the underlying geometrical constraints is derived, in which the angle the ridge appears as an internal degree of freedom. By contrast with traditional thin- walled beam models, this constitutive law captures large, non-rigid deformations of the cross-sections, including finite variations of the dihedral angle at the ridge. Using this effective rod theory, we identify a buckling instability that produces the out-of-plane configurations of the folded strip, and show that the strip behaves as an elastic ring having one frozen mode of curvature. In addition, we point out two novel buckling patterns: one where the centerline remains planar and the ridge angle is modulated; another one where the bending deformation is localized. These patterns are observed experimentally, explained based on stability analyses, and reproduced in simulations of the post-buckled configurations.

M. A. Dias and B. Audoly JMPS (2014) Arxiv and Journal.